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Abstract

Sufficient conditions for oscillation of all solutions of a class of neutral impul-

sive differential-difference equations of first order with deviating argument and fixed

moments of impulse effect are found .

1. Introduction

The impulsive differential equations describe processes which are characterized as continu-
ous, as jump-wise change of the phase variables describing the process. They are adequate
mathematical models of processes and phenomena studied in theoretical physics, chemical
technology, population dynamics, technique and economics. That is why, the impulsive
differential equations are an object of intensive investigation.

In the recent two decades the number of investigations of the oscillatory and non-
oscillatory behavior of the solutions of functional differential equations is constantly grow-
ing. Greater part of the works on this subject published by 1977 are given in [19]. In
the monographs [18] and [17] published in 1987 and 1991 respectively, the oscillatory and
asymptotic properties of the solutions of various classes of functional differential equations
are systematically studied.
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The investigation of impulsive differential equations of neutral type is still not well
studied. Let us note that in contrast to [9] the present paper deals with the oscillatory
properties of more general homogeneous impulsive differential equation. In the works [1]—
[6],[8],[16],[17] more general necessary and sufficient conditions for oscillation and non-
oscillation of the solutions of impulsive differential equations of first and second order are
found.

While qualitative theory for retarded and advanced differential equations has been well
developed over the last twenty years, (see,for example, [17],[18] and [19] ), only in resent
years has much effort been devoted to the study of neutral differential equations (see, for
example, [7] and [10]-[16] ).

In the present paper, we establish sufficient conditions for oscillation of all solutions
of a class of neutral impulsive differential-difference equations of first order with deviating
argument and fixed moments of impulse effect.

2. Preliminary notes

Consider the impulsive differential-difference inequalities of neutral type with a constant
delay:

[y(t) + p(t)y(t − τ)]′ + q(t)y(t − σ) < 0, t 6= τk, k ∈ N,

∆[y(τk) + pky(τk − τ)] + qky(τk − σ) < 0, k ∈ N,
(1)

and
[y(t) + p(t)y(t − τ)]′ + q(t)y(t − σ) > 0, t 6= τk, k ∈ N,

∆[y(τk) + pky(τk − τ)] + qky(τk − σ) > 0, k ∈ N,
(2)

and corresponding to it equation

[y(t) + p(t)y(t − τ)]′ + q(t)y(t − σ) = 0, t 6= τk, k ∈ N,

∆[y(τk) + pky(τk − τ)] + qky(τk − σ) = 0, k ∈ N,
(3)

where τ, σ ∈ R+, R+ = (0, +∞); τ > σ; τ1, τ2, . . . τk, . . . are the moments of impulse effect;
pk and qk are constants (k ∈ N).

Here
∆[y(τk) + pky(τk − τ)] = y(τk + 0) + pky(τk − τ + 0) − y(τk − 0) − pky(τk − τ − 0). We
suppose that y(τk − 0) = y(τk) and y(τk − τ − 0) = y(τk − τ) for k ∈ N .

We denote by PC(R+, R) the set of all functions u: R+ → R, which are continuous for
t ∈ R+, t 6= τk, k ∈ N, continuous from the left-side for t ∈ R+ and have discontinuity of
the first kind at the points τk ∈ R+, k ∈ N.

Introduce the following conditions:

H1. 0 < τ1 < τ2 < . . . and limk→+∞ τk = +∞.
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H2. p ∈ PC(R+, R) and pk = p(τk − 0) = p(τk) for k ∈ N.

H3. q ∈ C(R+, R+) and qk ≥ 0 for k ∈ N.

H4. p(t) ≤ −1 for t ∈ R+.

H5.
+∞∫

0

q(s)ds +
+∞∑
k=1

qk = +∞.

Definition 1 A function y : [−τ, +∞) → R is said to be a solution of (3) with initial
function ϕ ∈ C([−τ, 0], R) if y(t) = φ(t) for t ∈ [−τ, 0], y ∈ PC(R+, R), z(t) = y(t) +
p(t)y(t−τ) is continuously differentiable for t ∈ R+, and y(t) satisfies (3) for all sufficiently
large t ≥ 0.

Definition 2 The nonzero solution y(t) of the equation (3) is said to be nonoscillating if
there exists a point t0 ≥ 0 such that y(t) has a constant sign for t ≥ t0. Otherwise the
solution y(t) is said to oscillate.

Definition 3 The solution y(t) of the equation (3) is said to be regular, if it is defined on
some interval [Ty, +∞) ⊂ [t0, +∞) and

sup {|y(t)|: t ≥ T} > 0 for each T ≥ Ty.

Definition 4 The regular solution y(t) of the equation (3) is said to be eventually posi-

tive(eventually negative), if there exists t1 > 0 such that y(t) > 0 (y(t) < 0) for t ≥ t1.

3. Main results

Theorem 1 Let the following conditions hold:

1. Conditions H1 — H5 are met.

2.

lim inf
t→+∞

[
∑

t≤τk<t+τ−σ

(1 −
qk

pk1

)

t+τ−σ∫

t

−q(s)

p(s + τ − σ)
ds] >

1

e

where e = exp, pk1 = p(τk + τ − σ).

Then:

1. The inequality (1) has no eventually positive solution.

2. The inequality (2) has no eventually negative solution.

3.All solutions of the equation (3) are oscillatory.
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Proof. First of all,we shall prove that the inequality (1) has no eventually positive
solution. Let us suppose the opposite, i.e., there exists a solution y(t) of inequality (1) and
a number t0 > 0 such that y(t) is defined for t ≥ t0 and y(t) > 0 for t ≥ t0.

Set
z(t) = y(t) + p(t)y(t − τ), t≥ 0

∆z(τk) = ∆[y(τk) + pky(τk − τ)], k ∈ N.
(4)

From (1) and conditions H2 and H3 it follows that

z′(t) < −q(t)y(t − σ) < 0

and
∆z(τk) < −qky(τk − σ) ≤ 0.

The last inequalities implies that z is a decreasing function for t ≥ t0.

Let us suppose that z(t) ≥ 0 for t ≥ t1 ≥ t0. From (4) and condition H4 we obtain

y(t) ≥ −p(t)y(t − τ) ≥ y(t − τ)

∆y(τk) ≥ −pk∆y(τk − τ) ≥ ∆y(τk − τ),

i.e. y is a bounded function from below by m > 0.

Integrating (1) from t1 to t (t ≥ t1), we obtain

z(t) − z(t1) −
∑

t1≤τk<t

∆z(τk) +
∫ t

t1

q(s)y(s − σ)ds < 0

or

z(t) − z(t1) +
∑

t1≤τk<t

qky(τk − σ) +
∫ t

t1

q(s)y(s − σ)ds < 0,

i.e.,

z(t) ≤ z(t1) − m[

t∫

t1

q(s)ds +
∑

t1≤τk<t

qk].

It follows from the above inequality after passing to limit as t → +∞ that
limt→+∞ z(t) = −∞, which contradicts the assumption that z(t) ≥ 0 for t ≥ t1. Therefore,
z(t) < 0, for t ≥ t1.

From (4) we have that z(t) > p(t)y(t−τ), t ≥ t1, i.e. z(t+τ −σ) > p(t+τ −σ)y(t−σ).

Multiplying both sides of the last inequality by
q(t)

p(t + τ − σ)
< 0 we obtain

q(t)

p(t + τ − σ)
z(t + τ − σ)) < q(t)y(t − σ) < −z′(t)
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Therefore

z′(t) +
q(t)

p(t + τ − σ)
z(t + τ − σ)) < 0, t ≥ t1, t 6= τk (5)

But z(τk + τ − σ) > pk1y(τk − σ), pk1 = p(τk + τ − σ)

or
qk

pk1

z(τk + τ − σ) < qky(τk − σ) < −∆z(τk),

i.e.,

∆z(τk) +
qk

pk1

z(τk + τ − σ) < 0, k ∈ N. (6)

Denote τ − σ = l, s(t) =
−q(t)

p(t + l)
> 0 for t ≥ t1 and sk =

−qk

pk1

> 0, k ∈ N. Then from

(5) and (6) follows that

z′(t) − s(t)z(t + l) < 0, t ≥ t1, t 6= τk

∆z(τk) − skz(τk + l) < 0, τk ≥ t1, k ∈ N.
(7)

We shall prove that the impulsive differential-difference inequality (7) has no eventually
negative solution. Let us suppose the opposite, i.e., there exists a solution z(t) of inequality
(7) and a number t2 > 0 such that z(t) is defined for t ≥ t2 and z(t) < 0 for t ≥ t2.

We divide (7) by z(t) < 0, (t ≥ t2) and obtain

z′(t)

z(t)
− s(t)

z(t + l)

z(t)
> 0, t ≥ t2, t 6= τk (8)

Denote

w(t) =
z(t + l)

z(t)
, t ≥ t2

From the fact that z(t) is a decreasing function for t ≥ t2 it follows the inequality
w(t) > 1 for t ≥ t2.

Integrating (8) from t to t + l, (t ≥ t2) we obtain

ln
z(t + l)

z(t)
+

∑
t≤τk<t+l

ln
z(τk)

z(τk + 0)
>

t+l∫

t

s(u)
z(u + l)

z(u)
du. (9)

From
∆z(τk) = z(τk + 0) − z(τk) < skz(τk + l) < skz(τk)

implies
z(τk + 0) < (1 + sk)z(τk).
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Then

ln
z(τk)

z(τk + 0)
< ln

1

1 + sk

, k ∈ N. (10)

From (9) and (10) we obtain

t+l∫

t

z(u + l)

z(u)
s(u)du < ln[

z(t + l)

z(t)

∏
t1≤τk<t+l

1

1 + sk

]

or

z(t + 2l)

z(t)

t+l∫

t

s(u)du < ln[
z(t + l)

z(t)

∏
t≤τk<t+l

1

1 + sk

] (11)

Using the inequality ex > ex for x > 0 and (11) we find that

z(t + l)

z(t)
∏

t1≤τk<t+l(1 + sk)
> e

z(t+2l)
z(t)

t+l∫
t

s(u)du

> e
z(t + 2l)

z(t)

t+l∫

t

s(u)du

or

1

e
> [

∏
t≤τk<t+l

(1 + sk)]
z(t + 2l)

z(t + l)

t+l∫

t

s(u)du

i.e.

1

e
>

∏
t≤τk<t+l

(1 + sk)

t+l∫

t

s(u)du

The last inequality contradicts condition 2 of Theorem 1. Thus z(t) < 0 will not hold
for all t ≥ t2, and therefore (1) has no eventually positive solution.

In order to prove that (2) has no eventually negative solution, it is enough to note that
if y(t) is a solution of (2), then −y(t) is a solution of (1).

It follows from assertions 1 and 2 of Theorem 1 that the equation (3) has neither
eventually positive nor eventually negative solution. Therefore, each regular solution of
(3) is oscillatory.

The proof of the theorem is complete.

Corollary 1 Let the following conditions hold:

1. Conditions H1 — H5 are met.

2. There exists a constant r > 0 such that

q(t)

p(t + τ − σ)
≤ −r

for t ∈ R+.
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3.

lim inf
t→∞

[
∏

t≤τk<t+τ−σ

(1 −
qk

pk1

)] >
1

er(τ − σ)

where pk1 = p(τk + τ − σ).

Then:

1. The inequality (1) has no eventually positive solution.

2. The inequality (2) has no eventually negative solution.

3.All solutions of the equation (3) are oscillatory.

Proof. Let y(t) be an eventually positive solution of the inequality (1) for t ≥ t0, (t0 >

0). Then, proceeding as in proof of Theorem 1, we conclude (7). From (7) and from
condition 2 of Corollary 1 we obtain

z′(t) − rz(t + l) < 0 t ≥ t1, t 6= τk

∆z(τk) − rkz(τk + l) < 0, τk ≥ t1 k ∈ N,
(12)

where
rk = −

qk

pk1

, k ∈ N.

We shall prove that the impulsive differential-difference inequality (12) has no even-
tually negative solution. Let us suppose the opposite, i.e., there exists a solution z(t) of
inequality (12) and a number t2 > t1 such that z(t) < 0 for t ≥ t2. Then it follows from
(12) that z(t) is decreasing function for t ≥ t2.

We divide (12) by z(t) < 0, integrate from t to t + l, (t ≥ t2) and obtain

ln
z(t + l)

z(t)
−

∑
t≤τk<t+l

ln
z(τk + 0)

z(τk)
> r

t+l∫

t

z(u + l)

z(u)
du (13)

Analogously to the proof of Theorem 1 we obtain that

r

t+l∫

t

z(u + l)

z(u)
du < ln[

z(t + l)

z(t)

∏
t≤τk<t+l

(1 + rk)
−1]

or

rl
z(t + 2l)

z(t)
< ln[

z(t + l)

z(t)

∏
t≤τk<t+l

(1 + rk)
−1] (14)

Using the monotonicity of the function z(t) for t ≥ t2 we find that

z(t + 2l)

z(t)
> 1 and

z(t + l)

z(t)
> 1. From two last inequalities, (14) and from the inequality

ex > ex for x > 0 we find that
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z(t + l)

z(t)

∏
t≤τk<t+l

(1 + rk)
−1 > e

rl
z(t+2l)

z(t) > erl
z(t + 2l)

z(t)
;

∏
t≤τk<t+l

(1 + rk)
−1 > erl

z(t)z(t + 2l)

z(t + l)z(t)
,

or ∏
t≤τk<t+l

(1 + rk)
−1 > erl

z(t + 2l)

z(t + l)
.

Using the monotonicity of the function z(t) for t ≥ t2 we find that
z(t + 2l)

z(t + l)
> 1.

Therefore ∏
t≤τk<t+l

(1 + rk)
−1 > erl

or ∏
t≤τk<t+l

(1 + rk) <
1

rle

The last inequality contradicts condition 3 of Corollary 1.

In order to prove that (2) has no eventually negative solution, it is enough to note that
if y(t) is a solution of (2), then −y(t) is a solution of (1).

It follows from assertions 1 and 2 of Corollary 1 that the equation (3) has neither
eventually positive nor eventually negative solution. Therefore, each regular solution of
(3) is oscillatory.

The proof of the corollary is complete.

Theorem 2 Let the following conditions hold:

1. Conditions H1 — H5 are met.

2.

lim sup
k→+∞

[

τk∫

τk−τ+σ

−q(s)

p(s + τ − σ)
ds +

∑
τk−τ+σ≤τi<τk

(−
qi

pi

)] > 1.

Then:

1. The inequality (1) has no eventually positive solution.

2. The inequality (2) has no eventually negative solution.

3. All solutions of the equation (3) are oscillatory.

Proof. Let y(t) be an eventually positive solution of the inequality (1) for t ≥ t0, (t0 >

0). Then, proceeding as in proof of Theorem 1, we conclude (7).

We shall prove that the impulsive differential-difference inequality (7) has no eventually
negative solution.
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Let us suppose the opposite, i.e., there exists a solution z(t) of inequality (7) and a
number t2 > t1 such that z(t) < 0 for t ≥ t2, t2 ≥ t1.

Integrating (7) from τk − l to τk (τk ≥ t2 + l, l = τ − σ), we obtain

τk∫

τk−l

s(u)z(u + l)du − z(τk) + z(τk − l) +
∑

τk−l≤τi<τk

∆z(τi) > 0

or

z(τk)

τk∫

τk−l

s(u)du − z(τk) + z(τk − l) +
∑

τk−l≤τi<τk

siz(τi + l) > 0

i.e.,

z(τk)[

τk∫

τk−l

s(u)du +
∑

τk−l≤τi<τk

si − 1] > −z(τk − l) > 0

From the last inequality and from z(t) < 0 we obtain

τk∫

τk−l

s(u)du +
∑

τk−l≤τi<τk

si < 1

The last inequality contradicts condition 2 of Theorem 2.

In order to prove that (2) has no eventually negative solution, it is enough to note that
if y(t) is a solution of (2), then −y(t) is a solutionof (1).

It follows from assertions 1 and 2 of Theorem 2 that the equation (3) has neither
eventually positive nor eventually negative solution. Therefore, each regular solution of
(3) is oscillatory.

The proof of the theorem is complete.
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